About error bounds in metric spaces
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Abstract The paper presents a general primal space classification scheme of nec-
essary and sufficient criteria for the error bound property incorporating the exist-
ing conditions. Several primal space derivative-like objects — slopes — are used to
characterize the error bound property of extended-real-valued functions on metric
sapces.

1 Introduction

In this paper f is an extended-real-valued function on a metric space X, f(X) = 0,
Sp:={xeX|f(x) <0}, and f; (x) := max(f(x),0). We are looking for characteri-
zations of the error bound property.

Definition 1. f has a local error bound at X if there exists a ¢ > 0 such that
d(x,S¢) <cfy(x) forall x near %. (1)

For the summary of the theory of error bounds and its various applications, the
reader is referred to the survey papers [2, 5,9, 10], as well as the book [1]. Recent
extensions to vector-valued functions can be found in [3].

M. Fabian
Mathematical Institute, Academy of Sciences of the Czech Republic, Zitnd 25, 11567 Prague 1,
Czech Republic; e-mail: fabian@math.cas.cz

R. Henrion
Weierstrass Institute for Applied Analysis and Stochastics, 10117 Berlin, Germany; e-mail:
henrion @wias-berlin.de

A. Kruger

School of Information Technology and Mathematical Sciences, Centre for Informatics and Ap-
plied Optimization, University of Ballarat, POB 663, Ballarat, Vic, 3350, Australia; e-mail:
a.kruger@ballarat.edu.au

J. Outrata
Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic,
18208 Prague, Czech Republic; e-mail: outrata@utia.cas.cz

D. Klatte et al. (eds.), Operations Research Proceedings 2011, Operations Research Proceedings, 33
DOI 10.1007/978-3-642-29210-1_6, © Springer-Verlag Berlin Heidelberg 2012


mailto:outrata@utia.cas.cz
mailto:a.kruger@ballarat.edu.au
mailto:henrion@wias-berlin.de
mailto:fabian@math.cas.cz

34 M. Fabian, R. Henrion, A. Kruger, and J. Outrata

Property (1) can be equivalently defined in terms of the error bound modulus [5]:

Er (%) :zliminfd(f(? 7
Ao TV

2

namely, f has a local error bound at ¥ if and only if Er f(X) > 0. Constant (2) pro-
vides a quantitative characterization of this property.

2 Slopes

Primal space characterizations of error bounds can be formulated in terms of slopes.
Recall that the (strong) slope [4] of f at x (|f(x)| < o) is defined as

£~ fl)s

VfI(x) == fim sup ( ()

3)

The following modifications of (3) can be convenient for characterizing the error
bound property:

VA0 = limint L &L =0 4
s P

Vi) = _Jiminf _[V£1(x), (5)

IVf7(® = liminf |Vf|(x), (6)

x—=%, f(x) | f(%)

(= . (f(x) = f(u))y

V£I°(¥) == liminf sup —nr——"—. 7
VAT @) =, £()Lf(%) #5 d(u,x) @

Constants (4)—(7) are called the internal slope, strict slope, strict outer slope, and
uniform strict slope of f at X respectively.
The relationships between the constants are straightforward.
Proposition 1. (i) |V f|(x) < |Vf]” (%) < |Vf]°(%).
(ii) V1 (%) = (=|VfI°(%))+-
(iii) |V f|° (%) < [VA]°(%).
(v) If [V£°(2) > O then |V f|°(%) = Er f(%).
The inequalities in Proposition 1 can be strict.
Example 1. Let f : R — R be defined as follows:

0if x <0,
f(x):{xifxzo.

Obviously [Vf](0) = [V£|(0) = [V£]°(0) = 0. At the same time, |[Vf[>(0) =
IV£1°(0) = 1.
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The next example is a modification of the corresponding one in [6].

Example 2. Let f : R — R be defined as follows:

—xifx <0,
fo=¢L vl cv<clisin
={ - f—<x< -, i=
[ T HA
x ifx>1.

Obviously [V£|>(0) = |[V£](0) = 0. At the same time, [V £[°>(0) = |[Vf|°(0) = 1.

The function in the above example is discontinuous. However, the second in-
equality in Proposition 1 (i) can be strict for continuous and even Lipschitz con-
tinuous functions. The function in the next example is piecewise linear and Clarke
regular at O (that is, directionally differentiable, and its Clarke generalized direc-
tional derivative coincides with the usual one).

Example 3. Let f : R — R be defined as follows:
—X ifoO,
1 1 1 1 1
x| 14+-)—— if - <x< - + — ,i=1,2,...,
i i(i+1)  i+1 i+1 (i+1)2
1 1

<x< 77 i:1,2,...,

! if +

— l — ——
i i+1  (i+1)?
X if x> 1.

f is everywhere Fréchet differentiable except for a countable number of points. One
can find a point x > 0 arbitrarily close to 0 with |V f|(x) = 0 (on a horizontal part of
the graph). The slopes of non-horizontal parts of the graph decrease monotonously
to 1 as x | 0. It is not difficult to check that |V £]~ (0) = |V £|(0) = 0 while [V £[°(0) =
IVAP0)=1.

If f is convex then the second inequality in Proposition 1 (i) holds as equality.
For the function f in Example 1, it holds |V f](0) < |V f|~(0). In the nonconvex
case one can also have the opposite inequality.

Example 4. Let f : R — R be defined as follows:
x ifx <O,
fo) = {x2 if x > 0.

Obviously [Vf](0) = 1 while |[Vf]~(0) = 0. Note that despite slope |V f|(0) being
positive, the function in this example does not have a local error bound at 0. Hence,
condition |Vf|(¥) > 0 is not in general sufficient for the error bound property to
hold at x.
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3 Error bound criteria

The next theorem generalizes and strengthens [5, Theorem 2].
Theorem 1. (i) Er f(%) < |Vf]°(%).

(ii) If X is complete and f, is lower semicontinuous near %, then Er f (%) = |V f|°(%).
Proof. (i) If Erf(x) = 0 or |Vf|°(X) = oo, the conclusion is trivial. Let 0 < y <
Er f(%) and |V f|°(X) < eo. We are going to show that |V f|°(X) > y. By (2), there is
a 6 > 0 such that

f)
d(x, Sf)

for any x € Bg(x) with f(x) > f(%). Take any x € Bg(X) with f(X) < f(x) < f(¥)+ 6
(Such points x exist since |V f|°(X) < e.) By (8), one can find a w € S such that

> 7. 8)

It follows that |V f|°(x) > 7v.

(i) Let X be complete and f be lower semicontinuous near X. Thanks to (i),
we only need to prove that Er f(¥) > |Vf]°(x). If Erf(X) = e, the inequality is
trivial. Let Er f(¥) < 7 < oo. Chose a § > 0 such that /. is lower semicontinuous on
B(,1,1)5(%). Then by (2), there is an x € B i1 /2,51 (%) such that

0 < f(x) < vd(x,Sy).

Put € = f(x). Then f; (x) <inf f} + €. Applying to f; the Ekeland variational prin-
ciple with an arbitrary A € (y~'e,d(x,Sr)), one can find a w such that f(w) < f(x),
d(w,x) <A and

fi(u)+(e/A)d(u,w) > fr-(w),  Vu€Bp14)5(%). )
Obviously,

d(w.x) < d(x,5) < d(x.5). (10)
d(w,%) < d(w,x) +d(x,5) < 2d ( 7)<,
f(w) < f(x) <yd(x,%) <

Besides, f(w) > 0 due to the first inequality in (10). It follows from (9) that

fw) < fi(u)+(e/A)d(u,w) < yd(u,w)

forall u € B, 1, 1)5(X). I u & By 1 1)5(%), then d(u,w) > (Y '+ 1)6 —d(w,%) >
y~18, and consequently
Flw) < 6 < yd(u,w)

Thus, in both cases
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L0 =100
uF#w d(”v W)

This implies the inequality |V f|°(x) < Er f(x). O
Without lower semicontinuity, the inequality in Theorem 1 (i) can be strict.

Example 5. Let f : R — R be defined as follows:

—3x ifx <0,
fx)= 3x—lifi<x<l i=0,1
2i i+l =0T

2x ifx>1.
Obviously, Er £(0) = 1 while [V £]°(0) = 3.
Example 6. Let f : R> — R be defined as follows:
x1+xp if x; > 0,x >0,
—x1  ifx; >0,x <0,

—xp ifx, >0,x <0,
0 otherwise,

f(xlax2) =

and let R? be equipped with the Euclidean norm. The function is discontinuous on
the set {(¢,0) € R?:¢ >0} U{(0,¢) € R?:¢ > 0}. Then Er f(0) = 2 and |V f[°(0) =
3.

In view of Theorem 1, inequality Wo (%) > 0 provides a necessary and sufficient
error bound criterion for lower semicontinuous functions on complete metric spaces.
In a slightly different form, a similar condition for the calmness [q] property of level
set maps first appeared in [8, Proposition 3.4]; see also [7, Corollary 4.3].

Taking into account Proposition 1, inequalities

IVf°(® >0, |[Vf[(¥)>0 and [Vf["(x)>0

provide sufficient error bound criteria

The relationships among the primal space error bound criteria are illustrated in
Fig. 1 (X is complete and f; is lower semicontinuous near x).

In Banach spaces, it is possible to formulate corresponding dual space error
bound criteria in terms of subdifferential slopes [5].
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Fig. 1 Primal space criteria
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